American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2006-2007
quiz \# 2

Name: \qquad ID \#:

1. (10 points) Find the value of a for which the limit

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-a x}{x^{2}}
$$

is finite and evaluate this limit.
2. (20 points) Let $f(x, y)=\ln \left(\frac{1}{e-x^{2}-y^{2}}\right)$
a. find the domain D_{f} and the range R of f
b. what's the boundary of D_{f}, is the domain bounded? Justify.
c. is the domain closed or open? Justify.
d. find the equation of the level curve that passes through the point $(0,1)$.
e. sketch the level curves of f ?
3. (20 points) Find the area that lies inside the cardioid $r=2+2 \cos \theta$ and outside the circle $r=2$
(sketch the two curves)
4. (20 points) The Fourier series expansion of the function $f(x)=\left\{\begin{array}{cc}1 & 0 \leq x \leq \pi \\ 2 & \pi<x \leq 2 \pi\end{array} \quad\right.$ is

$$
a_{0}+\sum_{n=1}^{+\infty} b_{n} \sin (n x)
$$

a. find a_{0}, and b_{n}
b. use the series in part a) to show that $\sum_{k=0}^{+\infty} \frac{(-1)^{k}}{2 k+1}=\frac{\pi}{4}$.
5. (7 points) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{\sqrt{x^{2}+y^{2}}}$
6. (13 points) Use the two paths test to show that the function $f(x, y)=\frac{\ln (1+x y)}{x^{2}+y^{2}}$ does not have a limit at $(0,0)$

